
Subroutines

Objectives:

To know the advantages of subroutines

To be able to create a subroutine

To be able to call a subroutine

Subroutines/subprograms

A subroutine or subprogram is a block of

code that is given a name and can be run

from other parts of a program.

It should:

• have a sensible name that describes what

it does

• perform a single task

Pseudocode subroutine

subroutine gameInstructions()

print(“Welcome to the game”)

print(“Press z to move left, m to move right”)

print(“space to fire”)

print(“Game ends when you lose 3 lives”)

print(“Press h to see this screen again”)

end subroutine

Running the subroutine
You run a subroutine simply by giving its name (we say in
programming that we are calling the subroutine)

gameInstructions()

choice=input(“P to play, H for help Q to quit”)

while choice !=‘Q’

if choice ==‘p’ then

playGame()

end if

if choice==‘h’ then

gameInstructions()

end if

end while

Python

def gameInstructions():

print(“Welcome to the game”)

print(“Press z to move left, m to move right”)

print(“space to fire”)

print(“Game ends when you lose 3 lives”)

print(“Press h to see this screen again”)

Create a new program called

restaurant.py

In this program, create a subroutine called menu().

It should print a menu with three sections:

• Starters

• Mains

• Desserts

Within each section, print at least 3 dishes!

Run your program, what happens?

Call the menu subroutine 3 times

1. Edit your program so it displays a message
welcoming customers to the restaurant and then
displays the menu.

2. Display another message asking the customers what
they would like to order for their main meal, and
display the menu again.

3. Finally display a message asking the customers for
their dessert order, and display the menu again.

Your program should only be 6 lines long (not counting
the lines you used to create the subroutine itself)

Mini plenary
What are the advantages of subroutines?

• A subroutine can be written once, and used in
several places in a program, saving development
time.

• Once the subroutine is tested and working, it can
be used again and again without fear of
introducing any new bugs, leading to more reliable
programs.

• Programs that use subroutines are easier to
maintain because changes made to the
subroutine will not affect the rest of the program.

• Programs are easier to read and follow when
made up of carefully named subroutines.

Parameters

When defining or calling a subroutine, you

may have noticed the empty brackets.

menu()

These don’t have to be empty. Inside we can

put a value called an argument, which is

passed into the subroutine.

Parameters
In a new program, type the following:

def oddOrEven(number):

if number % 2 == 0:

print('Even number')

else:

print('Odd number')

oddOrEven(2)

oddOrEven(1)

Parameters
What is going on here?

def oddOrEven(number):

if number % 2 == 0:

print('Even number')

else:

print('Odd number')

oddOrEven(2)

oddOrEven(1)

Modify the restaurant program

Whilst having the menu() subroutine is

useful, it would be improved if we could pass

in a string to say which part of the menu to

print,e.g.

menu(“starters”) # prints just the starters

menu(“mains”) # prints just the mains

menu(“desserts”) # prints just the desserts

Returning values from subroutines

Arguments and parameters are a way of

passing data into a subroutine. What if you

want to return a value from the subroutine to

the main program? To do this, we use the

keyword return

def doubleIt(number):

return 2 * number

Returning values from subprograms

When we call a subprogram that returns a

value, we should store the returned value

into a variable.

def doubleIt(number):

return 2 * number

doubledNumber=doubleIt(3)

Create three subroutines

1. A subroutine that takes in one number

and returns the same number multiplied

by itself

2. A subroutine that takes in two numbers,

and returns the two numbers added

together

3. A subroutine that takes in a number and

returns True if it is even or False if it is

odd

